- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Moeller, David_A (3)
-
Anderson, Jill_T (1)
-
Angert, Amy_L (1)
-
Avolio, Meghan_L (1)
-
Benning, John_W (1)
-
Campbell, Diane_R (1)
-
Carley, Lauren_N (1)
-
Eckhart, Vincent_M (1)
-
Exposito‐Alonso, Moises (1)
-
Geber, Monica_A (1)
-
Juenger, Thomas_E (1)
-
Kooyers, Nicholas_J (1)
-
Morris, William_F (1)
-
Napier, Joseph_D (1)
-
Sheth, Seema_N (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary Herbaceous plant species have been the focus of extensive, long‐term research into climate change responses, but there has been little effort to synthesize results and predicted outlooks. This primer summarizes research on climate change responses for eight intensively studied herbaceous plant species. We establish generalities across species, examine limitations, and propose a path forward. Climate change has reduced fitness, caused maladaptation, and/or led to population declines in at least part of the range of all six forb species. Plasticity alone is likely not sufficient to allow adjustment to shifting climates. Most model species also have spatially restricted dispersal that may limit genetic and evolutionary rescue. These results are surprising, given that these species are generally widespread, span large elevation ranges, and have substantial genetic and phenotypic variation. The focal species have diverse life histories, reproductive strategies, and habitats, and most are native to North America. Thus, species that are rare, habitat specialists, or endemic to other parts of the world are poorly represented in this review. We encourage researchers to design demographic and field experiments that evaluate plant traits and fitness in contemporary and potential future conditions across the full life cycle, and that consider biotic interactions in climate change responses.more » « less
-
Carley, Lauren_N; Geber, Monica_A; Morris, William_F; Eckhart, Vincent_M; Moeller, David_A (, Ecology Letters)ABSTRACT Theory suggests that the drivers of demographic variation and local adaptation are shared and may feedback on one other. Despite some evidence for these links in controlled settings, the relationship between local adaptation and demography remains largely unexplored in natural conditions. Using 10 years of demographic data and two reciprocal transplant experiments, we tested predictions about the relationship between the magnitude of local adaptation and demographic variation (population growth rates and their elasticities to vital rates) across 10 populations of a well‐studied annual plant. In both years, we found a strong unimodal relationship between mean home‐away local adaptation and stochastic population growth rates. Other predicted links were either weakly or not supported by our data. Our results suggest that declining and rapidly growing populations exhibit reduced local adaptation, potentially due to maladaptation and relaxed selection, respectively.more » « less
-
Benning, John_W; Moeller, David_A (, Evolution)
An official website of the United States government
